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● Best perception models are trained in a fully-supervised 
fashion

● Require large amount of annotated data
● Data curation and manual annotation is 

time-consuming and expensive (eg. 35 secs per 
bounding box on an image)

Questions
● How to mitigate costs? 
● What data to annotate ? 

2D data

Efficient construction of training datasets

3D data
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Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles
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Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles

Unlabeled 
pool
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trained for a target task in cycles

Unlabeled 
pool

Annotation

Initial 
Selection
(random)



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D dataOriane Siméoni - Efficient construction of training datasets for 2D and 3D data

6

Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles

Labeled 
pool

Unlabeled 
pool

Annotation

Initial 
Selection
(random)



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D dataOriane Siméoni - Efficient construction of training datasets for 2D and 3D data

7

Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles

Labeled 
pool

Unlabeled 
pool

Model for 
target task

Annotation

Train 

Initial 
Selection
(random)



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D dataOriane Siméoni - Efficient construction of training datasets for 2D and 3D data

8

Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles

Labeled 
pool

Unlabeled 
pool

Model for 
target task

Annotation

Train 



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D dataOriane Siméoni - Efficient construction of training datasets for 2D and 3D data

9

Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles
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Select a budget 
of data using an 

acquisition 
function 
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Active 
Learning 

Core Concept

● Select the best images to be annotated for a model 
trained for a target task in cycles

Labeled 
pool

Unlabeled 
pool

Model for 
target task

Annotation
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Let’s start the 
discussion with 

image classification
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Unlabeled 
pool
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Data informativeness - model uncertainty
“The ability to reduce the generalization error of the 
classification model”

High
uncertainty

model
cycle-1

Unlabeled 
pool
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Data informativeness - model uncertainty
“The ability to reduce the generalization error of the 
classification model”

High
uncertainty

model
cycle-1

Unlabeled 
pool

m
od

el
pr

ed
ic

tio
ns

Low
uncertainty

Based on the 

● probabilities outputted by the model [Settles Tech Rep’09, 

Wang et al. TCSVT’16], 
○ Softmax Confidence, Softmax Margin, Softmax Entropy
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Data informativeness - model uncertainty
“The ability to reduce the generalization error of the 
classification model”

High
uncertainty

model
cycle-1

Unlabeled 
pool

m
od

el
pr

ed
ic

tio
ns

Low
uncertainty ● uncertainty between outputs of several models 

○ MC Dropout [Gal et al. ICML’17] 

○ Ensembles [Yang et al. Springer’17, Beluch et al. CVPR’18]

● the impact of the sample on the model [Ash et al. ICLR’20, 
Yoo1 & Kweon CVPR’19]

Based on the 

● probabilities outputted by the model [Settles Tech Rep’09, 

Wang et al. TCSVT’16], 
○ Softmax Confidence, Softmax Margin, Softmax Entropy
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Unlabeled 
pool

Data representativeness - data geometry
How much are selected data representative of the 
dataset?

Selected images should be 

● Diverse & represent the whole dataset
● Feature-based methods

○ core-sets [Sener & Savarese ICLR’18, Geifman & El-Yaniv arxiv’17]

○ k-means clustering [Zhdanov arxiv’19]

model
cycle-1

https://arxiv.org/search/cs?searchtype=author&query=Zhdanov%2C+F
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From image classification to more complex tasks

Unlabeled 
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→ Image-level 
uncertainty / diversity

Image classification
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From image classification to more complex tasks
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Image classification Object detection Semantic segmentation
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● Box localization uncertainty 

○ before  / after localization refinement step [Kao et al, ACCV’18]

● Instance-level uncertainty

○ given different views [Elezi et al. CVPR’22]

○ using ensembling-like approach [Choi et al, ICCV’21]

● Combine instance  & image-level diversity [Wu et al. CVPR’22]

22

Active learning for object detection
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Adapting from image 
classification to object 

detection
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Active Learning Strategies for 
Weakly-Supervised Object Detection

Huy V. Vo1,2, Oriane Siméoni2, Spyros Gidaris2, Andrei Bursuc2, 
Patrick Pérez2, Jean Ponce1,3

1 Inria and DI/ENS (ENS-PSL, CNRS, Inria), 2 Valeo.ai, 3 Center for Data Science
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Require only tag annotation
● Costs 1 sec per class per image
● Tags could also be obtained automatically

AeroplanePerson

Person

TrainCarCat
HorseDogPerson

Weakly-Supervised Object Detection
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Require only tag annotation
● Costs 1 sec per class per image
● Tags could also be obtained automatically

AeroplanePerson

Person

TrainCarCat
HorseDogPerson

Weakly-Supervised Object Detection

Example of weakly-supervised predictions

BUT 
● Lower performances
● Recurrent type of mistakes
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Idea : 
Improve weakly-supervised detectors with a few fully-annotated images

Aeroplane
PersonTrain
Car

Cat
Person

Dog

Weakly-Supervised Object Detection
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Labeled 
pool

Unlabeled 
pool

Model for 
target task

Annotation

Train 

The proposed pipeline
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Fully-labeled 
pool

Weakly-labeled (WL) 
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target task
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Train 

The proposed pipeline

Cat
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Dog
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Fully-labeled 
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target task

Annotation
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Box-in-Box AL strategy
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Step 1: find Box-in-Box (BiB) pairs
● Diverse pairs over the dataset of the 

same class 
● with a box “contained” in the other

Examples of BiB pairs
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Step 1: find Box-in-Box (BiB) pairs
● Diverse pairs over the dataset of the 

same class 
● with a box “contained” in the other

Examples of BiB pairs
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Box-in-Box AL strategy
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Step 1: find Box-in-Box (BiB) pairs
● Diverse pairs over the dataset of the 

same class 
● with a box “contained” in the other

Examples of BiB pairs

Step 2: Select diverse mistakes over the dataset
● Apply a clustering method
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Box-in-Box AL strategy
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Step 1: find Box-in-Box (BiB) pairs
● Diverse pairs over the dataset of the 

same class 
● with a box “contained” in the other

Diverse examples of BiB pairs

Step 2: Select diverse mistakes over the dataset
● Apply a clustering method
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Active learning for weakly-sup detector results
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VOC07 results COCO results

+
+

● BiB requires half the number of fully 
annotated images to obtain the same as 
random

● with only 1% (800 images) fully annotated get 
91% of fully-supervised model’s score on 
COCO
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With a robotic perspective @RO-MAN’22

37

● With a robot perspective
● Also starts with a weakly-supervised phase
● Let the robot explore the environment with a 

limited human labeling budget
● Apply 

○ Human-made annotation or
○ Semi-supervised labels
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Follow up work @ ICCV’23
ALWOD [Wang et al. ICCV’23]

38
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Application to 3D data
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Point Cloud scenes

Example of Point Cloud (PC) scenes
● 3D PC data
● Temporally aligned 2D images
● No annotation yet available

The task tackled: 
● Semantic PC segmentation
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Point Cloud scenes

Example of Point Cloud (PC) scenes
● 3D PC data
● Temporally aligned 2D images
● No annotation yet available

The task tackled: 
● Semantic PC segmentation

Annotation of 3D PC very expensive
● Require a label per point
● A single scene in the order of 50-200k 

points



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D data

42

Active learning for 3D data

What data to select ? 

Select full scenes to be annotated based on 
● The model uncertainty 

○ Softmax Confidence [Wang et al. TODO’14]

Softmax Margin [Wang et al. TODO’14]

Softmax Entropy [Wang et al. TODO’14]

○ Segment Entropy [Lin et al. ‘20]

○ MC-Dropout [Gal et al.  ICML’17]

● The scene diversity

○ CoreSet [Sener & Savarese ICLR’18]
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Active learning for 3D data

What data to select ? 

Select full scenes to be annotated based on 
● The model uncertainty 

○ Softmax Confidence [Wang et al. IJCNN’14]

Softmax Margin [Wang et al. IJCNN’14]

Softmax Entropy [Wang et al. IJCNN’14]

○ Segment Entropy [Lin et al. ‘20]

○ MC-Dropout [Gal et al.  ICML’17]

● The scene diversity

○ CoreSet [Sener & Savarese ICLR’18]

Select regions (ensemble of close points) to be 
annotated 

● ReDAL  [Wu et al. ICCV’21]

○ Mix regions diversity / informativness

● LiDAL [Hu et al. ECCV’22]

○ Additionally integrates self-training 

and pseudo-labeling
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Leveraging 2D data 
to boost 

3D Active Learning
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Seeding Active Learning for 3D Semantic 
Segmentation 

Nermin Samet1, Oriane Siméoni2, Gilles Puy2, Renaud Marlet1, 
Vincent Lepetit1

1 LIGM, Ecole des Ponts, Univ Gustave Eiffel, 2 Valeo.ai
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Labeled 
pool

Unlabeled 
pool

Model for 
target task

Annotation

Train 

Where do we start from ? 

Select a budget 
of images using 
an acquisition 

function 
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Unlabeled 
pool

Annotation

Where do we start from ? 

● Initial selection typically is randomly selected
● Could we make the initial label smarter ?
● What impact ?

Initial 
selection
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The effect of a random selection

48

● High variability between different draws
● Variability with all SoTA AL methods
● The larger variability at first cycles

Could we design the selection of a 
lucky seed for 3D data ?
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The effect of a random selection
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● High variability between different draws
● Variability with all SoTA AL methods
● The larger variability at first cycles

Could we design the selection of a 
lucky seed for 3D data ?

Has been explored in the 2D space
● Diversity-based strategy using  K-means 

[Pourahmadi et al. WACV’23, Chen et al. NeurIPS’22 ] or core-set 

[Mahmood et al. ICLR’22] on self-sup. features
● Generation of pseudo-labels via proxy task [Nath 

at al. MICCAI’22]
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Point Cloud scenes

Example of point cloud (PC) scenes
● 3D PC data
● Temporally aligned 2D images
● No annotation yet available
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Point Cloud scenes

Example of point cloud (PC) scenes
● 3D PC data
● Temporally aligned 2D images
● No annotation yet available

High redundancy in data → diversity important
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Diversity-based selection: what features ?

But what features to use?

● No label → self-supervised features
RotNet [Gidaris et al. ICLR’18]
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Diversity-based selection: what features ?

But what features to use?

● No label → self-supervised features

● Self-supervised 3D PC feature, available but sensitive to:

○ scene type (indoors vs outdoors)
○ sensor type (photogrammetry, depth cameras, lidars)

RotNet [Gidaris et al. ICLR’18]
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DINO [Caron et al. ICCV’21]
54

Diversity-based selection: what features ?

RotNet [Gidaris et al. ICLR’18]

DeepCluster [Caron et al. ECCV’18]
MOCO [He et al. CVPR’20]
MAE [He et al. CVPR’22]

But what features to use?

● No label → self-supervised features

● Self-supervised 2D feature:
○ Trained on larger dataset → generalize better
○ Less sensitive to data specificity (eg. both 

indoor/outdoor)
○ Good discrimilality properties

● Self-supervised 3D PC feature, available but sensitive to:

○ scene type (indoors vs outdoors)
○ sensor type (photogrammetry, depth cameras, lidars)
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● Select the most diverse scenes with 
○ high intra-scene diversity

■ Eg. high variety of objects depicted
■ Not uniform room

○ high inter-scene diversity
→ Select different type of scenes

○ use image features to evaluate the scenes diversity
 

55

What we propose

Intra-scene 
diversity score

Inter-scenes 
diversity score
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Modelling intra-scene diversity
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…

…

Unlabeled 
pool
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Modelling intra-scene diversity

image
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Intra-scene 
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= average 
pairwise 
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Modelling intra-scene diversity
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Modelling intra-scene diversity

image
features

self sup.
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…
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self sup.
model

…
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Inter-scenes 
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= average pairwise 
dissimilarities
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Modelling intra-scene diversity

image
features

self sup.
model

…
…

self sup.
model

…
…

d_i

d_j

d_i,jScene i

…

scene
images

…

Scene j

…

…

Unlabeled 
pool



Oriane Siméoni - Efficient construction of training datasets for 2D and 3D data

61

Modelling intra-scene diversity

Scene i
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image
features

scene
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Modelling inter-scene diversity

Scene i

Unlabeled 
pool

Scene j

e_i,j
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Modelling inter-scene diversity

Scene i

Unlabeled 
pool

Scene j

e_i,j

e_i,j
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Modelling inter-scene diversity

Scene i

Unlabeled 
pool

Scene j
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e_i,j
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Modelling inter-scene diversity

Scene i

Unlabeled 
pool

Scene j

e_i,j

e_i,j Optimization to select data 
implying the most diversity

within a budget
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The effect of a random selection
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● High variability between different draws
● Variability with all SoTA AL methods
● The larger variability at first cycles

Could we design the selection of a 
lucky seed ?
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SeedAL: a lucky seed

67

● High variability between different draws
● Variability with all SoTA AL methods
● The larger variability at first cycles

We can design the selection of a 
lucky seed 
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Comparison to k-means based baselines
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Different features, same conclusions
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Conclusions
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● Active Learning methods mix data with high informativeness & 
representativeness 

● AL strategy needs to be adapted depending on the task, e.g.

○ Finding a model’s typical mistake
○ Adapting to the structure of the data/task (boxes / 3D data)
○ Possible to leverage 2D & 3D features 

● The first selection matters !
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● Active Learning methods mix data with high informativeness & 
representativeness 

● AL strategy needs to be adapted depending on the task, e.g.

○ Finding a model’s typical mistake
○ Adapting to the structure of the data/task (boxes / 3D data)
○ Possible to leverage 2D & 3D features 

● The first selection matters !

Questions ? 


