Exploiting self-supervised features: unsupervised object localization



Oriane Siméoni valeo.ai

## **Object localization**

### **Object detection**



**COCO** [Lin et al. ECCV'14]

### **Instance segmentation**



COCO [Lin et al. ECCV'14]

Training a model for those tasks requires

- a lot of annotation 🍐
- the definition of a **finite set of classes**

### **Unsupervised** object localization



Segment anything [Kirillov et al., arxiv'23]

Training a model for those tasks requires

- a lot of annotation 👝
- the definition of a finite set of classes

### How to perform object localization with no annotation ?

### **Unsupervised** object localization



## **Unsupervised** object localization

### single-object/mask

Unsupervised object discovery

# Unsupervised saliency detection



Metric: **corloc** → the percentage of correct boxes



Metric: IoU, Accuracy



Unsupervised class-agn.

object detection

Metric: **AP** 

### multi-object

Unsupervised class-agn. **instance segmentation** 



Metric: **AP** 

#### Oriane Siméoni - Exploiting self-supervised features: unsupervised object localization @ CVPR23

### Some background

### • Region proposals

 Generate numerous class-agnostic bounding boxes with high recall but low precision eg. EdgeBoxes [Zitnick et al., ECCV'14], Selective Search [Uijlings et al., IJCV'13]

- Methods based on inter-image similarity
  - Explore an entire dataset [Cho et al. CVPR'15; Vo et al. CVPR'19; ECCV'20; NeurIPS'21]
  - Often requires external box proposals
  - Quadratic costs (except for [Vo et al. NeurIPS'21])





# Powerful self-supervision and transformers

Self-supervision has shown to be very powerful



otation270° rotation180° rotationRotNet[Gidaris et al. ICLR'18]



DeepCluster [Caron et al. ECCV'18]

**Transformers** applied to vision become prevalent



ViT [Dosovitskiy et al. ICLR'20]



# Exploiting existing powerful self-supervised features

ViT models pre-trained in a self-supervised manner have good localization properties





DINO [Caron et al. ICCV'21]

## Exploiting existing powerful self-supervised features

ViT models pre-trained in a self-supervised manner have good localization properties



Deep ViT Features as Dense Visual Descriptors [Amir et al. ECCVW'22]

### **Presentation outline**





cat ? person ? what ?

### Unsupervised object discovery Generation of initial masks

### Improving localization through learning

model

<u>ר ר</u>

**Class-aware ?** 

### **Presentation outline**





cat ? person ? what ?

### Unsupervised object discovery Generation of initial masks

### Improving localization through learning

**Class-aware ?** 

## Using the self-attention maps



Attention is all you need [Vaswani et al. NeurIPS'17]

### Using the self-attention maps

Head 1

- But, 6 heads attend to different parts of an image
- Without supervision hard to distinguish what is important and is an object

### [CLS] self-attention maps



Head 2Head 3Head 4Head 5Oriane Siméoni - Exploiting self-supervised features: unsupervised object localization @ CVPR23

Head 6

### How to exploit the self-supervised features?

- The K,Q,V features are interesting and do not require decision on the head
- **Good correlation** properties of the features
- Features for object patches are more **discriminative** than for the background
  → Object patches are less correlated to other patches
- Most methods require to compute a **graph** of patch features





### Building graph:

- nodes: patches





#### Building graph:

- nodes: patches
- edges: cosine similarity



#### Building graph:

- nodes: patches
- edges: cosine similarity
- connect patches with edges **above a threshold**



#### Building graph:

- nodes: patches
- edges: cosine similarity
- connect patches with edges above a threshold











- Foreground patches are less correlated than background patches
- Less patches of object than background







- Foreground patches are less correlated than background patches
- Less patches of object than background

#### Concept

- Use the information of **degree** 

Degree of a vertex

# of edges that are incident to the vertex









input image 25



- Foreground patches are less correlated than background patches
- Less patches of object than background

#### Concept

- Use the information of **degree** 

Degree of a vertex

# of edges that are incident to the vertex





input image 26



- Foreground patches are less correlated than background patches
- Less patches of object than background



#### Concept

- Use the information of **degree**
- **Object seed**: patch with the lowest degree





- Foreground patches are less correlated than background patches
- Less patches of object than background



#### Concept

- Use the information of **degree**
- **Object seed**: patch with the lowest degree
- Select **similar** patches



### LOST [Siméoni et al. BMVC'21]

#### Assumptions

- Foreground patches are less correlated than background patches
- Less patches of object than background



#### Concept

- Use the information of **degree**
- **Object seed**: patch with the lowest degree
- Select **similar** patches
- Further **expand** patch region to **similar** patches



### LOST [Siméoni et al. BMVC'21]

#### Assumptions

- Foreground patches are less correlated than background patches
- Less patches of object than background

#### Concept

- Use the information of **degree**
- **Object seed**: patch with the lowest degree \_
- Select **similar** patches \_
- Further **expand** patch region to **similar** patches \_

| FPS) - <b>Single</b> object detection<br>- Issues when object covers<br>most of image<br>- Coarse |
|---------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|

#### **Benefits**

- + Quick (60
- + Better th methods

#### Oriane Siméoni - Exploiting self-supervised features: unsupervised object localization @ CVPR23

#### 30

input image

#### Assumptions

Foreground objects can then be segmented to group self-similar region

#### Concept

- Solve a **normalized graph-cut** problem



### Normalized graph-cut

Find **two sets** in a graph with

- min degree of similarity between two sets
- each set with max degree of similarity to the whole graph

input image 31

#### Assumptions

Foreground objects can then be segmented to group self-similar region

#### Concept

- Solve a **normalized graph-cut** problem



Find two sets in a graph with

- min degree of similarity between two sets
- each set with max degree of similarity to the whole graph

input image 32

#### Assumptions

Foreground objects can then be segmented to group self-similar region

#### Concept

- Solve a **normalized graph-cut** problem



#### Normalized graph-cut

Find **two sets** in a graph with

- min degree of similarity between two sets
- each set with max degree of similarity to the whole graph

input image 3

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a **normalized graph-cut** problem

#### Normalized graph-cut

Find **two sets** in a graph with

- min degree of similarity between two sets
- each set with max degree of similarity to the whole graph

Oriane Siméoni - Exploiting self-supervised features: unsupervised object localization @ CVPR23

input image 34

#### Assumptions

Foreground objects can then be segmented to group self-similar region

#### Concept

- Solve a **normalized graph-cut** problem



#### Normalized graph-cut

Find **two sets** in a graph with

- min degree of similarity between two sets
- each set with max degree of similarity to the whole graph

input image 35

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a **normalized graph-cut** problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?

36
#### Assumptions

Foreground objects can then be segmented to group self-similar region

- Solve a **normalized graph-cut** problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

- Solve a **normalized graph-cut** problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

- Solve a **normalized graph-cut** problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a normalized graph-cut problem
  - Solved with spectral clustering
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch





input image 4

#### **Benefits**

- + More refined **localization**
- + Better than inter-images methods
- + Generalizability to =/= feats

#### Limits

- Single object detection
- Requires to compute eigenvector → slower

#### **Related work**

#### - Deep Spectral Methods

[Melas-Kyriazi et al. CVPR'22] Additional idea: integrate pixel-level features in the graph

# $\textbf{TokenCut}_{[Wang et al. CVPR'22]} \rightarrow \textbf{MaskCut}_{[X. Wang et al. CVPR'23]}$

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a normalized graph-cut problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch

#### Extension

- More than one object can be found
- Remove the already discovered nodes from the graph and repeat the operation



# $\textbf{TokenCut}_{[Wang et al. CVPR'22]} \rightarrow \textbf{MaskCut}_{[X. Wang et al. CVPR'23]}$

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a normalized graph-cut problem
  - Solved with spectral clustering
- Given the bi-partition, which is the object ?
- Select the set containing the least connected patch

#### Extension

- More than one object can be found
- Remove the already discovered nodes from the graph and repeat the operation





# TokenCut [Wang et al. CVPR'22] $\rightarrow$ MaskCut [X. Wang et al. CVPR'23]

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a normalized graph-cut problem
  - Solved with **spectral clustering**
- Given the bi-partition, which is the object?
- Select the set containing the least connected patch

#### Extension

- More than one object can be found
- Remove the already discovered nodes from the graph and repeat the operation



# TokenCut [Wang et al. CVPR'22] $\rightarrow$ MaskCut [X. Wang et al. CVPR'23]

#### Assumptions

Foreground objects can then be segmented to **group** self-similar region

#### Concept

- Solve a normalized graph-cut problem
  - Solved with spectral clustering
- Given the bi-partition, which is the object ?
- Select the set containing the least connected patch

#### Extension

- More than one object can be found
- Remove the already discovered nodes from the graph and repeat the operation

#### **Benefits**

- + Several objects
- + More refined **localization**
- + Better than inter-images methods

#### Limits

- Are they **all objects ?**
- Requires to compute eigenvector
  - + iterative process → slower



ocalization @ CVPR23

(---)

#### Assumptions

**Different self-supervised features** entangle different information about foreground/background



- Consider different self-supervised features
- Use **spectral clustering** to produce masks with different number of clusters





#### Assumptions

**Different self-supervised features** entangle different information about foreground/background



#### Concept

- Consider different self-supervised features
- Use **spectral clustering** to produce masks with different number of clusters
- Vote for the **best** candidate
  - Mask with **highest IoU similarity** to all others





VOTING

#### Assumptions

Different self-supervised features entangle different information about foreground/background

#### Concept

- Consider different self-supervised features
- Use **spectral clustering** to produce masks with different number of clusters
- Vote for the **best** candidate
  - Mask with **highest IoU similarity** to all others

#### **Benefits**

- + Leverages several self-supervised features
- + Better than inter-images methods

#### Limits

- Single object detection
- Several forward passes
- Requires to compute eigenvector → slower







### FreeMask [Xinlong Wang et al. CVPR'22]

#### Assumptions

- Attention can be directly used to produce masks

- Generate **many coarse masks** (one per query)
- Then sort and select using NMS-like function
- Use different **scales**





### FreeMask [Xinlong Wang et al. CVPR'22]

#### Assumptions

- Attention can be directly used to produce masks

#### Concept

- Generate **many coarse masks** (one per query)
- Then sort and select using NMS-like function
- Use different **scales**



# BenefitsLimits+ Several objects- Masks for not objects+ Getting closer to instance- Hard to filter out the bad+ Better than inter-images<br/>methodsmasks



### input image 4

#### Assumptions

- Look for the background instead of objects → no hypothesis needed about objects
- Background receives **little attention** in SSL features

#### Concept

- Find the **background seed** = patch with **least attention** 



#### Assumptions

- Look for the background instead of objects → no hypothesis needed about objects
- Background receives **little attention** in SSL features

#### Concept

- Find the **background seed** = patch with **least attention**
- Select all similar patches = **background mask**



#### Assumptions

- Look for the background instead of objects → no hypothesis needed about objects
- Background receives **little attention** in SSL features

#### Concept

- Find the **background seed** = patch with **least attention**
- Select all similar patches = **background mask**
- Foreground = complement of background



#### Assumptions

- Look for the background instead of objects → no hypothesis needed about objects
- Background receives little attention in SSL features

#### Concept

- Find the **background seed** = patch with **least attention**
- Select all similar patches = **background mask**
- Foreground = complement of background

#### **Benefits**

- + Localize **several object**
- + Quick to compute
- + Better than inter-images methods

#### Limits

- No clear instance
- Coarse

background seed attention maps



input image 5

### Some results

#### Is the box corresponding to a ground-truth box?

| Method                           | VOC07   | VOC12 | COCO20k |
|----------------------------------|---------|-------|---------|
| - No lea                         | rning — |       |         |
| Selective Search [47]            | 18.8    | 20.9  | 16.0    |
| EdgeBoxes [76]                   | 31.1    | 31.6  | 28.8    |
| Kim et al. [26]                  | 43.9    | 46.4  | 35.1    |
| Zhang et al. [70]                | 46.2    | 50.5  | 34.8    |
| DDT+ [60]                        | 50.2    | 53.1  | 38.2    |
| rOSD [50]                        | 54.5    | 55.3  | 48.5    |
| LOD [53]                         | 53.6    | 55.1  | 48.5    |
| DINO-seg [6] [45] (ViT-S/16 [6]) | 45.8    | 46.2  | 42.0    |
| LOST [45] (ViT-S/8 [6])          | 55.5    | 57.0  | 49.5    |
| LOST [45] (ViT-S/16 [6])         | 61.9    | 64.0  | 50.7    |
| DSS [34] (ViT-S/16 [6])          | 62.7    | 66.4  | 52.2    |
| TokenCut [59] (ViT-S/8 [6]) †    | 67.3    | 71.6  | 60.7    |
| TokenCut [59] (ViT-S/16 [6])     | 68.8    | 72.1  | 58.8    |

metric: corloc



(a) LOST (b) LOST (c) Our Eigen (d) Our Inverse Attn. Detection Attention Detection TokenCut [Wang et al. CVPR'22]





Unlabeled images Free Mask output FreeMask [Xinlong Wang et al. CVPR'22]

Oriane Siméoni - Exploiting self-supervised features: unsupervised object localization @ CVPR23

54

## Simple ways to refine prediction

- Fit the masks to **pixel-level** information
- Use Bilateral Solver (BS) or Conditional Random Field (CRF)
- Require **no-training**

#### Limits

- Rather slow post-processing



### Take-away







input image

self-supervised feature object mask

#### Conclusions

- Possible to discover **objects** with **no annotation**
- Easy to discover *a single object*, generalizing to **several is harder**
- Interesting performances on VOC/COCO dataset

### Take-away





input image

self-supervised feature

object mask

#### Conclusions

- Possible to discover **objects** with **no annotation**
- Easy to discover *a single object*, generalizing to **several is harder**
- Interesting performances on VOC/COCO dataset

#### **Remaining issues**

- How to successfully perform multi-object detection?
- How to exchange information at a dataset level?
- How to **refine** results?

### **Presentation outline**



### **Presentation outline**





#### Assumptions

- Allows to go from single object discovery to multiple object localization
- Training helps to **smooth out mistakes** from initial localization

### Improving through learning: object detection

Unsupervised object discovery

object detection

model



ps 



pseudo-labels

Loss

#### **Pseudo-labels:**

- Fit a box to the biggest connected component in the **initial mask** 

#### Inference:

gradient

- Multi-object detection
- Better boxes

### Improving through learning: object detection

**Unsupervised object** discovery

object detection

model



pseudo-labels



Loss

### **Pseudo-labels:**

- Fit a box to the biggest connected component in the initial mask

#### **Inference:**

gradient

- Multi-object detection
- Better boxes



### +CAD (Class-Agnostic Detector) [Siméoni et al. BMVC'21]

| Constant                                    |       | Method                    | VOC07 [19]          | VOC12 [20]   | COCO20K [33, 56             |
|---------------------------------------------|-------|---------------------------|---------------------|--------------|-----------------------------|
| Concept                                     |       | Selective Search [45, 51] | 18.8                | 20.9         | 16.0                        |
| - Train an object detector model in a       |       | EdgeBoxes [45, 79]        | 31.1                | 31.6         | 28.8                        |
| class-agnostic fashion (+CAD)               |       | Kim et al. [30, 45]       | 43.9                | 46.4         | 35.1                        |
|                                             |       | Zhange et al. [45, 74]    | 46.2                | 50.5         | 34.8                        |
| - Train a <b>Faster-RCNN</b> [Ren et al.    |       | DDT+ [45, 61]             | 50.2                | 53.1         | 38.2                        |
| NeurIPS'15] without adaptation              |       | rOSD [45, 56]             | 54.5                | 55.3         | 48.5                        |
|                                             |       | LOD [45, 57]              | 53.6                | 55.1         | 48.5                        |
|                                             |       | DINO-seg [6, 45]          | 45.8                | 46.2         | 42.1                        |
| Benefit                                     |       | LOST [45]                 | 61.9                | 64.0         | 50.7                        |
| - From <b>single</b> to <b>multi-object</b> |       | TokenCut                  | <b>68.8</b> († 6.9) | 72.1 († 8.1) | <b>58.8</b> († <b>8.1</b> ) |
| detection + CAD                             | + CAD | LOD + CAD* [45]           | 56.3                | 61.6         | 52.7                        |
|                                             |       | rOSD + CAD* [45]          | 58.3                | 62.3         | 53.0                        |
|                                             |       | $LOST + CAD^{*}$ [45]     | 65.7                | 70.4         | 57.5                        |
|                                             | I     | TokenCut + CAD* [45]      | 71.4 († 5.7)        | 75.3 († 4.9) | 62.6 († 5.1)                |
|                                             |       | metric: corloc            | + 3.3/2.5           | + 6.4/3.2    | + 7.0/3.8                   |



### Improving through learning: foreground\_segmentation

Unsupervised object discovery



### pseudo-labels

Foreground segmentation **model** 



#### **Pseudo-labels:**

- The initial mask

#### Inference:

gradient

- Produce a foreground mask per image

#### Concept:

- Learn an **encoder/decoder** architecture to produce masks
- Learning regularize results → **great boost**



#### Architecture:

- MaskFormer [Cheng et al. CVPR'22] architecture
- Compose of an **image encoder** + a **pixel decoder** + a **transformer decoder**
- transformer decoder outputs per-mask embeddings

After training: + 14/16 IoU points

### FOUND [Siméoni CVPR'23]

#### Concept

- Train a **single conv 1x1** layer with pseudo-labels
- Quick **2h training** on a single GPU with no annotation \_
- Inference at 80 FPS 🚀 on a V100 -





### MOVE [Bielski et al. NeurIPS'22]

#### Assumptions

With a good mask:

- can **remove** the object & **inpaint** the background
- can shift the extracted foreground object and **paste** it on top of the inpainted background
- if mask is not accurate → **see duplication artifacts**

#### Concept

- Train a segmenter model = ViT+CNN head to generate object masks
- Train a **discriminator** to predict if real or fake image

#### **Related work**

ReDO [Chen et al. NeurIPS'19]
 Idea: possible to change textures/colors of objects without changing the overall distribution of the dataset.
 GAN-based method.



### Improving through learning: instance segmentation

Unsupervised object discovery

Foreground segmentation **model** 





#### Assumptions

- Allows to go from single object discovery to multiple object localization
- Training helps to **smooth out mistakes** from initial localization



### FreeSolo [Xinlong Wang et al. CVPR'22]

#### Concept

- Train an instance segmentation **SOLO** [Xinlong Wang et al. TPAMI'21] model

#### **Tricks**

- Use a weakly-supervised loss with boxes instead of masks with a loss for min/max of boxes and avg of boxes
- Pairwise affinity loss because close
  pixels are likely to be in the same class





### CutLer [X. Wang et al. CVPR'23]

#### Concept

Train instance segmentation models
 Mask-RCNN [He et al. ICCV'17] & Cascade
 Mask-RCNN [Cai et al. TPAMI'21]

#### **Tricks**

- **Drop the loss** for each predicted region that are matching any pseudo-masks
- Copy/paste augmentation
- Do several rounds of training repetition
  → increase the number of predicted instance





### Take-away



#### Conclusions

- Training boosts performances and regularize initial masks mistakes
- From single to **multi-object** localization

#### **Remaining issues**

- How to further improve results?
- Limited by the abilities of the self-supervised features
- What about **classes**?

### **Presentation outline**


### **Presentation outline**



## **Out-of-domain localization**





FOUND [Siméoni et al. CVPR'23]

## From class-agnostic to class-aware?

### **Closed-vocabulary**

- Can build a **descriptor per mask** and compute **k-means clustering** at the level of the dataset [LOST, BMVC'21]
- But, **k is a hyper-parameter**



#### **Open-vocabulary**

- SSL features have at the moment **better dense-discrimativeness** than CLIP-like models
- But given mask computed using SSL features one can compute descriptor in an open-voc representation



# Open-vocabulary: Zero-shot Unsupervised Transfer Instance Segmentation [Shin et al., CVPRW'23]

### Concept

- A unified framework for **semantic** and **instance segmentation**
- Propose to match images to set of text features





# Open-vocabulary: Zero-shot Referring Image Segmentation [Yu et al., CVPR'23]

### Concept

- Zero-shot referring image segmentation: find grounding region for a text input
- Use **FreeSolo** to generate masks
- Propose a **local/global** similarity





## Take-away

### Conclusions

- Possible to discover objects with no annotation
- Easy extraction method for *single object* localization
- Training allows to **boosts** performances and increase # localized objects
- Possible to assign closed/open classes to masks/boxes

### **Remaining issues**

- How to further improve results?
- Limited by the abilities of the self-supervised features
- Could we **learn image representation** specifically **designed** for the needs of **object localization** ?

### **Questions ?**